Nucleoprotein phase-separation affinities revealed via atomistic simulations of short peptide and RNA fragments

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Liquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of these biomolecular mixtures. In this study, we employ atomistic simulations of twenty distinct mixtures containing minimal RNA and peptide fragments to dissect the phase-separating affinities of all twenty amino acids in the presence of RNA. Our findings elucidate chemically specific interactions, hydration profiles, and ionic effects that synergistically promote or suppress protein-RNA phase separation. We map a ternary phase diagram of interactions, identifying four distinct groups of residues that promote, maintain, suppress, or disrupt protein-RNA clusters.

Article activity feed