Hyperexcitability precedes CA3 hippocampal neurodegeneration in a dox-regulatable TDP-43 mouse model of ALS-FTD

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence in tissue and slice culture models indicate that TDP-43 pathology induces neuronal hyperexcitability suggesting it may be responsible for the excitotoxicity long believed to be a major driver of ALS neuron death. Here, we characterized hyperexcitability and neurodegeneration in the hippocampus of doxycycline-regulatable rNLS8 mice (NEFH-tTA x tetO-hTDP-43ΔNLS), followed by treatment with AAV encoded DREADDs and anti-seizure medications to measure the effect on behavioral function and neurodegeneration. We found that approximately half of the CA3 neurons in the dorsal hippocampus are lost between 4 and 6 weeks after TDP-43ΔNLS induction. Neurodegeneration was preceded by selective hyperexcitability in the mossy fiber – CA3 circuit, leading us to hypothesize that glutamate excitotoxicity may be a significant contributor to neurodegeneration in this model. Interestingly, hippocampal injection of AAV encoded inhibitory DREADDs (hM4Di) and daily activation with CNO ligand rescued anxiety deficits on elevated zero maze (EZM) but did not reduce neurodegeneration. Therapeutic doses of the anti-seizure medications, valproic acid and levetiracetam, did not improve behavior or prevent neurodegeneration. These results highlight the complexity of TDP-43 - induced alterations to neuronal excitability and suggest that whereas targeting hyperexcitability can meliorate some behavioral deficits, it may not be sufficient to halt or slow neurodegeneration in TDP-43-related proteinopathies.

Significance Statement

Cytoplasmic aggregates of TAR DNA Binding Protein 43 (TDP-43) are the predominant pathology in over 90% of Amyotrophic lateral sclerosis (ALS) and the majority of frontotemporal lobar degeneration (FTLD-TDP) cases. Understanding how TDP-43 pathology promotes neurodegeneration may lead to therapeutic strategies to slow disease progression in humans. Recent reports in mouse and cell culture models suggest loss-of-normal TDP-43 function may drive neuronal hyperexcitability, a key physiological hallmark of ALS and possible contributor to neurodegeneration. In this study, we identified region-specific hyperexcitability that precedes neurodegeneration in the inducible rNLS8 TDP-43 mouse model. Suppressing hyperexcitability with chemogenetics improved behavioral function but did not reduce hippocampal neuron loss. Anti-seizure medications had no beneficial effects suggesting directly targeting hyperexcitability may not be therapeutically effective.

Article activity feed