An optimized pipeline for high-throughput bulk RNA-Seq deconvolution illustrates the impact of obesity and weight loss on cell composition of human adipose tissue
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cellular heterogeneity of human adipose tissue, is linked to the pathophysiology of obesity and may impact the response to energy restriction and changes in fat mass. Here, we provide an optimized pipeline to estimate cellular composition in human abdominal subcutaneous adipose tissue (ASAT) from publicly available bulk RNA-Seq using signature profiles from our previously published full-length single nuclei (sn)RNA-Seq of the same depot. Individuals with obesity had greater proportions of macrophages and lower proportions of adipocyte sub-populations and vascular cells compared with lean individuals. Two months of diet-induced weight loss (DIWL) increased the estimated proportions of macrophages; however, two years of DIWL reduced the estimated proportions of macrophages, thereby suggesting a bi-phasic nature of cellular remodeling of ASAT during weight loss. Our optimized high-throughput pipeline facilitates the assessment of composition changes of highly characterized cell types in large numbers of ASAT samples using low-cost bulk RNA-Seq. Our data reveal novel changes in cellular heterogeneity and its association with cardiometabolic health in humans with obesity and following weight loss.
Lead contact
Katie Whytock ( Katie.Whytock@adventhealth.com )