Whisker deprivation triggers a distinct form of cortical homeostatic plasticity that is impaired in the Fmr1 KO

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mouse models of Fragile X Syndrome (FXS) have demonstrated impairments in excitatory and inhibitory sensory-evoked neuronal firing. Homeostatic plasticity, which encompasses a set of mechanisms to stabilize baseline activity levels, does not compensate for these changes in activity. Previous work has shown that impairments in homeostatic plasticity are observed in FXS, including deficits in synaptic scaling and intrinsic excitability. Here, we aimed to examine how homeostatic plasticity is altered in vivo in an Fmr1 KO mouse model following unilateral whisker deprivation (WD). We show that WD in the wild type leads to an increase in the proportion of L5/6 somatosensory neurons that are recruited, but this does not occur in the KO. In addition, we observed a change in the threshold of excitatory neurons at a later developmental stage in the KO. Compromised homeostatic plasticity in development could influence sensory processing and long-term cortical organization.

Article activity feed