Longitudinal analysis of genetic and environmental interplay in human metabolic profiles and the implication for metabolic health

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Understanding how genetics and environmental factors shape human metabolic profiles is crucial for advancing metabolic health. Variability in metabolic profiles, influenced by genetic makeup, lifestyle, and environmental exposures, plays a critical role in disease susceptibility and progression.

Methods

We conducted a two-year longitudinal study involving 101 clinically healthy individuals aged 50 to 65, integrating genomics, metabolomics, lipidomics, proteomics, clinical measurements, and lifestyle questionnaire data from repeat sampling. We evaluated the influence of both external and internal factors, including genetic predispositions, lifestyle factors, and physiological conditions, on individual metabolic profiles. Additionally, we developed an integrative metabolite-protein network to analyze protein-metabolite associations under both genetic and environmental regulations.

Results

Our findings highlighted the significant role of genetics in determining metabolic variability, identifying 22 plasma metabolites as genetically predetermined. Environmental factors such as seasonal variation, weight management, smoking, and stress also significantly influenced metabolite levels. The integrative metabolite-protein network comprised 5,649 significant protein-metabolite pairs and identified 87 causal metabolite-protein associations under genetic regulation, validated by showing a high replication rate in an independent cohort. This network revealed stable and unique protein-metabolite profiles for each individual, emphasizing metabolic individuality. Notably, our results demonstrated the importance of plasma proteins in capturing individualized metabolic variabilities. Key proteins representing individual metabolic profiles were identified and validated in the UK Biobank, showing great potential for predicting metabolic diseases and metabolic risk assessment.

Conclusions

Our study provides longitudinal insights into how genetic and environmental factors shape human metabolic profiles, revealing unique and stable individual metabolic profiles. Plasma proteins emerged as key indicators for capturing the variability in human metabolism and assessing metabolic risks. These findings offer valuable tools for personalized medicine and the development of diagnostics for metabolic diseases.

Article activity feed