Framing major depressive disorder as a condition of network imbalance at the compartment level: a proof-of-concept study
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Major depressive disorder (MDD) is associated with hypoactivity in the frontoparietal (FP) system and hyperactivity in the limbic (LM) system. The widely accepted limbic-cortical dysregulation model has recently been extended by the concept of imbalanced reciprocal suppression between these 2 systems. This study investigates the refined theoretical framework. Neuroimaging datasets from 60 MDD and 60 healthy controls were obtained from the Canadian Biomarker Integration Network in Depression database, including structural magnetic resonance imaging (MRI) and resting-state functional MRI (rsfMRI). The cerebral cortex was parcellated using the modular analysis and similarity measurements (MOSI) technique. For each node, the average amplitude of low-frequency fluctuation (avgALFF) and nodal strength were calculated. Correlation analyses were conducted to establish an adjacency matrix and assess the relationship between nodal power and strength. The results indicated that the LM system in MDD displayed higher partition numbers and avgALFF (P < 0.005). A significant negative correlation between nodal strength and power was replicated (P < 1E-10), suggesting that greater functional input enhances regional neural suppression. Notably, MDD participants exhibited a higher negative correlation between FP nodal power and LM-FP connectivity (stronger suppression) but a lower negative correlation between LM nodal power and FP-LM connectivity (weaker suppression). These findings support the theory of abnormal cortical signal organization and reciprocal suppression in MDD.