Multiband EEG signature decoded using machine learning for predicting rTMS treatment response in major depression

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Major depressive disorder (MDD) is a global health challenge with high prevalence. Further, many diagnosed with MDD are treatment resistant to traditional antidepressants. Repetitive transcranial magnetic stimulation (rTMS) offers promise as an alternative solution, but identifying objective biomarkers for predicting treatment response remains underexplored. Electroencephalographic (EEG) recordings are a cost-effective neuroimaging approach, but traditional EEG analysis methods often do not consider patient-specific variations and fail to capture complex neuronal dynamics. To address this, we propose a data-driven approach combining iterated masking empirical mode decomposition (itEMD) and sparse Bayesian learning (SBL). Our results demonstrated significant prediction of rTMS outcomes using this approach (Protocol 1: r=0.40, p<0.01; Protocol 2: r=0.26, p<0.05). From the decomposition, we obtained three key oscillations: IMF-Alpha, IMF-Beta, and the remaining residue. We also identified key spatial patterns associated with treatment outcomes for two rTMS protocols: for Protocol 1 (10Hz left DLPFC), important areas include the left frontal and parietal regions, while for Protocol 2 (1Hz right DLPFC), the left and frontal, left parietal regions are crucial. Additionally, our exploratory analysis found few significant correlations between oscillation specific predictive features and personality measures. This study highlights the potential of machine learning-driven EEG analysis for personalized MDD treatment prediction, offering a pathway for improved patient outcomes.

Article activity feed