Functional localization of visual motion area FST in humans
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The fundus of the superior temporal sulcus (FST) in macaques is implicated in the processing of complex motion signals, yet a human homolog remains elusive. Here we considered potential localizers and evaluated their effectiveness in delineating putative FST (pFST), from hMT and MST, two nearby motion-sensitive areas in humans. Nine healthy participants underwent scanning sessions with 2D and 3D motion localizers, as well as population receptive field (pRF) mapping. We observed consistent anterior and inferior activation relative to hMT and MST in response to stimuli that contained coherent 3D, but not 2D, motion. Motion opponency and myelination measures further validated the functional and structural distinction between pFST and hMT/MST. At the same time, standard pRF mapping techniques that reveal the visual field organization of hMT/MST proved suboptimal for delineating pFST. Our findings provide a robust framework for localizing pFST in humans, and underscore its distinct functional role in motion processing.