A Novel Technique for Fluorescence Lifetime Tomography
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Fluorescence lifetime has emerged as a unique imaging modality for quantitatively assessing in vivo the molecular environment of diseased tissues. Although fluorescence lifetime microscopy (in 2D) is a mature field, 3D imaging in deep tissues remains elusive and challenging owing to scattering. Herein, we report on a deep neural network (coined AUTO-FLI) that performs both 3D intensity and quantitative lifetime reconstructions in deep tissues. The proposed Deep Learning (DL)-based approach involves an in silico scheme to generate fluorescence lifetime data accurately. The developed DL model is validated both in silico and on experimental phantoms. Overall, AUTO-FLI provides accurate 3D quantitative estimates of both intensity and lifetime distributions in highly scattering media, demonstrating its unique potential for fluorescence lifetime-based molecular imaging at the mesoscopic and macroscopic scale.