U2AF regulates the translation and localization of nuclear-encoded mitochondrial mRNAs
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The mechanisms underlying molecular targeting to mitochondria remain enigmatic, yet this process is crucial for normal cellular function. The RNA binding proteins U2AF1/2 form a heterodimer (U2AF) that shuttles between the nucleus and cytoplasm, regulating splicing in the nucleus and translation in the cytoplasm. Our study identifies an unexpected role for U2AF in mitochondrial function. We demonstrate that U2AF interacts with nuclear-transcribed mitochondrial mRNAs and proteins, inhibits translation, localizes to the outer mitochondrial membrane, and regulates mRNA localization to mitochondria. Moreover, an oncogenic point-mutation in U2AF1(S34F) disrupts this regulation, leading to altered mitochondrial structure, increased translation, and OXPHOS-dependent metabolic rewiring, recapitulating changes observed in bone marrow progenitors from patients with myelodysplastic syndromes. These findings reveal a non-canonical role for U2AF, where it modulates multiple aspects of mitochondrial function by regulating the translation and mitochondrial targeting of nuclear-encoded mRNAs.