Recent origin of modern clades of iron oxidizers and low clade fidelity of iron metabolisms
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Reduced iron was abundant in Earth's surface environments before their oxygenation, so iron oxidation could have been a common metabolism on the early Earth. Consequently, modern microbial iron oxidation is sometimes seen as a holdover from an earlier biosphere, but the continuity of involved lineages or the metabolic process itself has not been verified. Modern neutrophilic iron oxidizers use cytochrome-porin Cyc2 as the initial electron acceptor in iron oxidation. With the protein as a proxy for the metabolism, we performed a phylogenetic analysis of Cyc2 to understand the evolutionary history of this microbial iron oxidation pathway. In addition to known iron oxidizers, we identified Cyc2 orthologs in gammaproteobacterial endosymbionts of lucinid bivalves. These bivalves have a robust fossil record and rely on sea-grass meadows that only appear in the Cretaceous, providing a valuable time calibration in the evolutionary history of Cyc2. Our molecular clock analysis shows that extant sampled Cyc2 diversity has surprisingly recent common ancestry, and iron oxidation metabolisms in Gallionellaceae, Zetaproteobacteria, and photoferrotrophic Chlorobi likely originated in the Neoproterozoic or the Phanerozoic via multiple transfer events. The groups responsible for microbial iron oxidation have thus changed over Earth history, possibly reflecting the instability of niches with sufficient reduced iron. We note that frequent transfer and changing taxonomic distribution may be a general pattern for traits which are selected for sporadically across space and time. Based on iron metabolism and other processes, we explore this concept of a trait's "clade fidelity" (or lack thereof) and establish its evolutionary importance.