Peptide-MHC-targeted retroviruses enable in vivo expansion and gene delivery to tumor-specific T cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Tumor-infiltrating-lymphocyte (TIL) therapy has demonstrated that endogenous T cells can be harnessed to initiate an effective anti-tumor response. Despite clinical promise, current TIL production protocols involve weeks-long ex vivo expansions which can affect treatment efficacy. Therefore, additional tools are needed to engineer endogenous tumor-specific T cells to have increased potency while mitigating challenges of manufacturing. Here, we present a strategy for pseudotyping retroviral vectors with peptide-major histocompatibility complexes (pMHC) for antigen-specific gene delivery to CD8 T cells and examine the efficacy of these transduced cells in immunocompetent mouse models. We demonstrate that pMHC-targeted viruses are able to specifically deliver function-enhancing cargoes while simultaneously activating and expanding anti-tumor T cells. The specificity of these viral vectors enables in vivo engineering of tumor-specific T cells, circumventing ex vivo manufacturing processes and improving overall survival in B16F10-bearing mice. Altogether, we have established that pMHC-targeted viruses are efficient vectors for reprogramming and expanding tumor-specific populations of T cells directly in vivo , with the potential to substantially streamline engineered cell therapy production for a variety of applications.

Article activity feed