Notch and LIM-homeodomain protein Arrowhead regulate each other in a feedback mechanism to play a role in wing and neuronal development in Drosophila

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Notch pathway is an evolutionarily conserved signaling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. To identify novel effectors of Notch signaling, we analyzed the whole transcriptome of Drosophila wing and eye imaginal discs in which an activated form of Notch was overexpressed. A LIM homeodomain protein Arrowhead (Awh) was identified as a novel candidate which plays a crucial role in Notch mediated developmental events. Awh alleles show strong genetic interaction with Notch pathway components. Awh loss-of-function upregulates Notch targets Cut and Wingless. Awh gain-of-function downregulates Notch targets by reducing the expression of ligand, Delta. Consequently, the expression of Wingless effector molecule Armadillo and its downstream targets, Senseless and Vestigial, also gets downregulated. Awh overexpression leads to ectopicexpression of engrailed , a segment polarity gene in the anterior region of wing disc, leading to patterning defects. Additionally, Notch gain-of-function mediated neuronal defects get significantly rescued with Awh overexpression. Activated Notch inhibits Awh activity, suggesting a regulatory loop between Awh and Notch. Additionally, the defects caused by Awh gain-of-function were remarkably rescued by Chip, a LIM interaction domain containing transcriptional co-factor. The present study highlights the novel feedback regulation between Awh and Notch.

Article activity feed