A hybrid bioprinting-electrospinning platform integrating nanofibers and mesenchymal cell spheroids for customizable wound healing dressings

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We introduce a platform for the fabrication of customizable wound healing dressing. The platform integrates electrospun nanofibers, bioprinted hydrogels, and cellular spheroids into hierarchical, fiber-reinforced hybrid constructs. The construct leverages the mechanical strength of polycaprolactone (PCL) nanofibers and the ECM-like properties of GelMA/PEGDA hydrogel. These materials support the incorporation of bone marrow-derived mesenchymal stem cell (BM-hMSC) spheroids, which act as a supportive “cell niche,” enhancing the viability of the hMSC during and after bioprinting, and facilitating their spreading across the construct during the maturation phase. The characterization of the hybrid constructs demonstrated strong structural integrity and enhanced mechanical properties, making them well-suited for clinical wound dressing applications. In vitro assays, including live/dead staining, MTT assays, and scratch assays, revealed increased cell attachment, proliferation, and migration. The spheroids maintained their viability over extended periods, significantly contributing to wound closure in the scratch assay. This innovative approach, which combines electrospinning and light-based bioprinting, offers a promising strategy for the development of customizable wound dressings that closely adapt to the complex architecture of human skin. The bioprinting approach allows for the creation of tailored geometries for specific clinical requirements. Future research will focus on optimizing scaffold design and conducting long-term in vivo studies to validate the platform’s clinical potential.

Article activity feed