Plasma exosomes from individuals with type 2 diabetes drive breast cancer aggression in patient-derived organoids

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Women with obesity-driven type 2 diabetes (T2D) face worse breast cancer outcomes, yet metabolic status does not fully inform current standards of care. We previously identified plasma exosomes as key drivers of tumor progression; however, their effect on immune cells within the tumor microenvironment (TME) remains unclear. Using a novel patient-derived organoid (PDO) system that preserves native tumor-infiltrating lymphocytes (TILs), we show that T2D plasma exosomes induce a 13.6-fold expansion of immunosuppressive TILs relative to nondiabetic controls. This immune dysfunction may promote micrometastatic survival and resistance to checkpoint blockade, a known issue in T2D cancer patients. Tumor-intrinsic analysis revealed a 1.5-fold increase in intratumoral heterogeneity and 2.3-fold upregulation of aggressive signaling networks. These findings reveal how T2D-associated metabolic dysregulation alters tumor–immune crosstalk through previously underappreciated exosomal signaling, impairing antitumor immunity and accelerating progression. Understanding these dynamics could inform tailored therapies for this high-risk, underserved patient population.

Article activity feed