Zebrafish models of human-duplicated SRGAP2 reveal novel functions in microglia and visual system development
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The expansion of the human SRGAP2 family, resulting in a human-specific paralog SRGAP2C, likely contributed to altered evolutionary brain features. The introduction of SRGAP2C in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we show that srgap2 knockout results in viable offspring and that these larvae phenocopy “humanized” SRGAP2C larvae, including altered morphometric features (i.e., reduced body length and inter-eye distance) and differential expression of synapse-, axonogenesis-, and vision-related genes. Through single-cell transcriptome analysis, we demonstrate a skewed balance of excitatory and inhibitory neurons that likely contribute to increased susceptibility to seizures displayed by Srgap2 mutant larvae, a phenotype resembling SRGAP2 loss-of-function in a child with early infantile epileptic encephalopathy. Single-cell data also shows strong endogenous expression of srgap2 in microglia with mutants exhibiting altered membrane dynamics and likely delayed maturation of microglial cells. Microglia cells expressing srgap2 were also detected in the developing eye together with altered expression of genes related to axonogenesis in mutant retinal cells. Consistent with the perturbed gene expression in the retina, we found that SRGAP2 mutant larvae exhibited increased sensitivity to broad and fine visual cues. Finally, comparing the transcriptomes of relevant cell types between human (+ SRGAP2C ) and non-human primates (– SRGAP2C ) revealed significant overlaps of gene alterations with mutant cells in our zebrafish models; this suggests that SRGAP2C plays a similar role altering microglia and the visual system in modern humans. Together, our functional characterization of conserved ortholog Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.
Abstract (short)
SRGAP2C has been implicated in contributing to altered brain features in the evolution of humans. However, the significance of SRGAP2 duplication beyond neocortex development has not been elucidated due to the embryonic lethality of complete Srgap2 knockout in mice. Using zebrafish, we show that srgap2 knockout results in viable offspring that phenocopy “humanized” SRGAP2C larvae. Morphometric, behavioral, and transcriptome analyses collectively suggest srgap2 impacts axonal guidance, synaptogenesis, and seizure susceptibility. Beyond neurons, Srgap2 functions in controlling membrane dynamics and maturation of microglial cells, possibly leading to altered axonogenesis in the developing retina and increased sensitivity to broad and fine visual cues. Comparing relevant transcriptomes between human and nonhuman primates suggests that SRGAP2C similarly impacts microglia and vision in modern humans. Our functional characterization of conserved ortholog Srgap2 and human SRGAP2C in zebrafish uncovered novel gene functions and highlights the strength of cross-species analysis in understanding the development of human-specific features.