Biofabrication of engineered tissues by 3D bioprinting of tissue specific high cell-density bioinks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Bioprinting of high cell-density bioinks is a promising technique for cellular condensation-based tissue engineering and regeneration medicine. However, it remains difficult to create precisely controlled complex structures and organization of tissues with high cell-density bioink-based bioprinting for tissue specific condensation. In this study, we present newly biofabricated tissues from directly assembled, tissue specific, high cell-density bioinks which have been three-dimensionally printed into a photocrosslinkable and biodegradable hydrogel microparticle supporting bath. Three types of tissue specific high cell-density bioinks have been prepared with individual stem cells or stem cell aggregates by incorporation of growth factor-loaded gelatin microparticles. The bioprinted tissue specific high cell-density bioinks in the photocrosslinked microgel supporting bath condense together and differentiate down tissue-specific lineages to form multi-phase tissues (e.g., osteochondral tissues). By changing the growth factors and cell types, these tissue specific high cell-density bioinks enable engineering of various functional tissues with controlled architecture and organization of cells.

Article activity feed