Genetic deletion of NAPE-PLD induces context-dependent dysregulation of anxiety-like behaviors, stress responsiveness, and HPA-axis functionality in mice

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N -acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N -acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress.

Significance Statement

The endocannabinoid anandamide (AEA) regulates stress responsiveness and activity of the hypothalamic-pituitary-adrenal (HPA) axis. Currently, little is known about how an enzyme (i.e. N -acylphosphatidylethanolamine phospholipase-D (NAPE-PLD)) involved in the synthesis of AEA affects behavior. We hypothesized that genetic deletion of NAPE-PLD would dysregulate responsiveness to stress at a behavioral and neuronal level. Our studies provide insight into potential vulnerabilities to stress and anxiety that may result from dysregulation of the enzyme NAPE-PLD in people.

Article activity feed