LM11a-31 Inhibits p75 Neurotrophin Receptor (p75 NTR ) Cleavage and is Neuroprotective in a Cell Culture Model of Parkinson’s Disease

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The p75 Neurotrophin Receptor (p75 NTR ) is a multifunctional transmembrane protein that mediates neuronal responses to pathological conditions in specific regions of the nervous system. In many biological contexts, p75 NTR signaling is initiated through sequential cleavage of the receptor by α- and γ-secretases, which releases receptor fragments for downstream signaling. Our previous work demonstrated that proteolytic processing of p75 NTR in this manner is stimulated by oxidative stress in Lund Human Mesencephalic (LUHMES) cells, a dopaminergic neuronal cell line derived from human mesencephalic tissue. Considering the vulnerability of dopaminergic neurons in the ventral mesencephalon to oxidative stress and neurodegeneration associated with Parkinson’s disease (PD), we investigated the role of this signaling cascade in neurodegeneration and explored cellular processes that govern oxidative stress-induced p75 NTR signaling. In the present study, we provide evidence that oxidative stress induces cleavage of p75 NTR by promoting c-Jun N-terminal Kinase (JNK)-dependent internalization of p75 NTR from the cell surface. This activation of p75 NTR signaling is counteracted by tropomyosin-related kinase (Trk) receptor signaling; however, oxidative stress leads to Trk receptor downregulation, thereby enhancing p75 NTR processing. Importantly, we demonstrate that this pathway can be inhibited by LM11a-31, a small molecule modulator of p75 NTR , thereby conferring protection against neurodegeneration. Treatment with LM11a-31 significantly reduced p75 NTR cleavage and neuronal death associated with oxidative stress. These findings reveal novel mechanisms underlying activation of p75 NTR in response to oxidative stress, underscore a key role for p75 NTR in dopaminergic neurodegeneration, and highlight p75 NTR as a potential therapeutic target for reducing neurodegeneration in PD.

Article activity feed