NRF2 translation block by inhibition of cap-dependent initiation sensitizes lymphoma cells to ferroptosis and CAR-T immunotherapy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cancers coopt stress-response pathways to drive oncogenesis, dodge immune surveillance, and resist cytotoxic therapies. Several of these provide protection from ferroptosis, iron-mediated oxidative cell death. Here, we found dramatic sensitization to ferroptosis upon disruption of cap-dependent translation in diffuse large B-cell lymphoma (DLBCL). Specifically, rocaglate inhibitors of the eIF4A1 RNA helicase synergized with pharmacologic ferroptosis inducers, driven by a collapse of glutathione production that protects polyunsaturated fatty acids from ferroptotic oxidation. These effects occur despite initial up-regulation of specific protective factors. We find lost translation of NRF2, oncogenic master regulator of antioxidant gene-expression, is a key consequence of eIF4A1 inhibition. In vivo, combination of the clinical rocaglate zotatifin with a pharmacologically optimized ferroptosis inducer eradicated DLBCL patient derived xenografts. Moreover, we found zotatifin pre-exposure sensitized DLBCL to CD19-directed chimeric antigen receptor (CAR-19) T cells. Translational disruption therefore provides new opportunities to leverage therapeutic impacts of ferroptosis inducers including cytotoxic immunotherapies.

Article activity feed