Wakefulness Induced by TAAR1 Partial Agonism is Mediated Through Dopaminergic Neurotransmission

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Trace amine-associated receptor 1 (TAAR1) is known to negatively regulate dopamine (DA) release. The partial TAAR1 agonist RO5263397 promotes wakefulness and suppresses NREM and REM sleep in mice, rats, and non-human primates. We tested the hypothesis that the TAAR1-mediated effects on sleep/wake were due, at least in part, to DA release. Male C57BL6/J mice (n=8) were intraperitoneally administered the D1R antagonist SCH23390, the D2R antagonist eticlopride, a combination of D1R+D2R antagonists or saline at ZT5.5, followed 30 min later by RO5263397 or vehicle (10% DMSO in DI water) at ZT6 per os . EEG, EMG, subcutaneous temperature, and activity were recorded in each mouse across the 8 treatment conditions and sleep architecture was analyzed for 6 hours post-dosing. Consistent with our previous reports, RO5263397 increased wakefulness as well as the latency to NREM and REM sleep. D1, D2, and D1+D2 pretreatment reduced RO5263397-induced wakefulness during the first 1-2 hours after dosing, but only the D1+D2 combination attenuated the wake-promoting effect of RO5263397 from ZT6-8, mostly by increasing NREM sleep. Although D1+D2 antagonism blocked the wake-promoting effect of RO5263397, only the D1 antagonist significantly reduced the TAAR1-mediated increase in NREM latency. Neither the D1 nor the D2 antagonist affected TAAR1-mediated suppression of REM sleep. These results suggest that, whereas TAAR1 effects on wakefulness are mediated in part through the D2R, D1R activation plays a role in reversing the TAAR1-mediated increase in NREM sleep latency. By contrast, TAAR1-mediated suppression of REM sleep appears not to involve D1R or D2R mechanisms.

Article activity feed