Sex differences in contextual fear expression are associated with altered medial prefrontal cortex activity
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Understanding the neural basis of fear expression in rodents has implications for understanding pathological fear responses that characterize posttraumatic stress disorder. Even though posttraumatic stress disorder is more common in females, little is known about the neural circuit interactions supporting fear expression in female rodents. In this study, we were interested in determining whether neural activity associated with the expression of contextual fear differed between males and females within the projections from the medial prefrontal cortex to the ventrolateral periaqueductal gray, and in the medial prefrontal cortex in neurons that do not project to the periaqueductal gray. We infused a viral retrograde tracer into the ventrolateral periaqueductal gray in male and female rats and trained them in a contextual fear conditioning task. The following day rats were re-exposed to the conditioning context and were sacrificed shortly thereafter. Neural activity was measured using EGR1 immunofluorescence. The behavioral results showed that males exhibited higher levels of freezing during the context test than females. Male rats that underwent training and testing showed an increase in the proportion of viral infected cells that express EGR1 in the PL compared to rats that had only received context exposure. Trained female rats were not different than controls, however a direct comparison between sexes was not different. In cells not labeled by the tracer, males showed higher levels of fear-induced EGR1 expression in the prelimbic cortex than females. Conversely, females showed higher levels of EGR1 expression in the infralimbic cortex following testing as compared to males. These results suggest that sex differences in the expression of contextual fear may involve differences in the relative activity levels of the prelimbic and infralimbic cortex.