Full-length structure and heme binding in the transcriptional regulator HcpR

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

HcpR is a CRP-family transcriptional regulator found in many Gram-negative anaerobic bacteria. In the perio-pathogen Porphyromonas gingivalis, HcpR is crucial for the response to reactive nitrogen species such as nitric oxide (NO). Binding of NO to the heme group of HcpR leads to transcription of the redox enzyme Hcp. However, the molecular mechanisms of heme binding to HcpR remain unknown. In this study we present the 2.3Å structure of the P. gingivalis HcpR. Interdomain interactions present in the structure help to form a hydrophobic pocket in the N-terminal sensing domain. A comparison analysis with other CRP-family members reveals that the molecular mechanisms of HcpR-mediated regulation may be distinct from other family members. Using docking studies, we identify a putative heme binding site in the sensing domain. In vitro complementation and mutagenesis studies verify Met68 as an important residue in activation of HcpR. Finally, heme binding studies with purified forms of recombinant HcpR support Met68 and His149 residues as important for proper heme coordination in HcpR.

Article activity feed