Chaperone-mediated heterotypic phase separation prevents the amyloid formation of the pathological Y145Stop variant of the prion protein
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Biomolecular condensates formed via phase separation of proteins and nucleic acids are crucial for the spatiotemporal regulation of a diverse array of essential cellular functions and the maintenance of cellular homeostasis. However, aberrant liquid-to-solid phase transitions of such condensates are associated with several fatal human diseases. Such dynamic membraneless compartments can contain a range of molecular chaperones that can regulate the phase behavior of proteins involved in the formation of these biological condensates. Here, we show that a heat shock protein 40 (Hsp40), Ydj1, exhibits a holdase activity by potentiating the phase separation of a disease-associated stop codon mutant of the prion protein (Y145Stop) either by recruitment into Y145Stop condensates or via Y145Stop-Ydj1 two-component heterotypic phase separation that prevents the conformational conversion of Y145Stop into amyloid fibrils. Utilizing site-directed mutagenesis, multicolor fluorescence imaging, single-droplet steady-state and picosecond time-resolved fluorescence anisotropy, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy, we delineate the complex network of interactions that govern the heterotypic phase separation of Y145Stop and Ydj1. We also show that the properties of such heterotypic condensates can further be tuned by RNA that promotes the formation of multicomponent multiphasic protein-RNA condensates. Our vibrational Raman spectroscopy results in conjunction with atomic force microscopy imaging reveal that Ydj1 effectively redirects the self-assembly of Y145Stop towards a dynamically-arrested non-amyloidogenic pathway, preventing the formation of typical amyloid fibrils. Our findings underscore the importance of chaperone-mediated heterotypic phase separation in regulating aberrant phase transitions and amyloid formation associated with a wide range of deadly neurodegenerative diseases.