Spatiotemporal dynamics of locomotor decisions in Drosophila melanogaster

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Decision-making in animals often involves choosing actions while navigating the environment, a process markedly different from static decision paradigms commonly studied in laboratory settings. Even in decision-making assays in which animals can freely locomote, decision outcomes are often interpreted as happening at single points in space and single moments in time, a simplification that potentially glosses over important spatiotemporal dynamics. We investigated locomotor decision-making in Drosophila melanogaster in Y-shaped mazes, measuring the extent to which their future choices could be predicted through space and time. We demonstrate that turn-decisions can be reliably predicted from flies’ locomotor dynamics, with distinct predictability phases emerging as flies progress through maze regions. We show that these predictability dynamics are not merely the result of maze geometry or wall-following tendencies, but instead reflect the capacity of flies to move in ways that depend on sustained locomotor signatures, suggesting an active, working memory-like process. Additionally, we demonstrate that fly mutants known to have sensory and information-processing deficits exhibit altered spatial predictability patterns, highlighting the role of visual, mechanosensory, and dopaminergic signaling in locomotor decision-making. Finally, highlighting the broad applicability of our analyses, we generalize our findings to other species and tasks. We show that human participants in a virtual Y-maze exhibited similar decision predictability dynamics as flies. This study advances our understanding of decision-making processes, emphasizing the importance of spatial and temporal dynamics of locomotor behavior in the lead-up to discrete choice outcomes.

Article activity feed