Soil nutrition-dependent dynamics of the root-associated microbiome in paddy rice

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

  • Plants accommodate diverse microbial communities (microbiomes), which can change dynamically during plant adaptation to varying environmental conditions. However, the direction of these changes and the underlying mechanisms driving them, particularly in crops adapting to the field conditions, remain poorly understood.

  • We investigate the root-associated microbiome of rice ( Oryza sativa L.) using 16S rRNA gene amplicon and metagenome sequencing, across four consecutive cultivation seasons in a high-yield, non-fertilized, and pesticide-free paddy field, compared to a neighboring fertilized and pesticide-treated field.

  • Our findings reveal that root microbial community shifts and diverges based on soil fertilization status and plant developmental stages. Notably, nitrogen-fixing bacteria such as Telmatospirillum, Bradyrhizobium and Rhizomicrobium were over-represented in rice grown in the non-fertilized field, implying that the assembly of these microbes supports rice adaptation to nutrient-deficient environments.

  • A machine learning model trained on the microbiome data successfully predicted soil fertilization status, highlighting the potential of root microbiome analysis in forecasting soil nutrition levels. Additionally, we observed significant changes in the root microbiome of ccamk mutants, which lack a master regulator of mycorrhizal symbiosis, under laboratory conditions but not in the field, suggesting a condition-dependent role for CCaMK in establishing microbiomes in paddy rice.

Article activity feed