Single-Molecule Studies of Cognate and Near-Cognate Elongation in an in vitro Eukaryotic Translation System

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ribosome plays a central role in translation of the genetic code into amino acid sequences during synthesis of polypeptides. During each cycle of peptide elongation, the ribosome must discriminate between correct and incorrect aminoacyl-tRNAs according to the codon present in its A-site. Ribosomes rely on a complex sequence of proofreading mechanisms to minimize erroneous selection of incorrect aminoacyl-tRNAs that would lead to mistakes in translation. These mechanisms have been studied extensively in prokaryotic organisms, but eukaryotic elongation is less well understood. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) with an in vitro eukaryotic translation system to investigate tRNA selection and subsequent steps during peptide elongation. We compared accommodation of a tryptophan-aminoacyl-tRNA into the ribosomal A-site containing either a cognate or near-cognate codon and unexpectedly found that, following an initial slow sampling event, subsequent near-cognate sampling events proceeded more rapidly than the initial event. Further, we found a strong negative correlation between the concentration of near-cognate aminoacyl-tRNA and the efficiency of tRNA accommodation. These novel characteristics of near-cognate interaction with the eukaryotic ribosome suggest that rejection of a near-cognate tRNAs leads to formation of an altered ribosomal conformation that assists in rejecting subsequent incorrect tRNA interactions.

Article activity feed