NEMF-mediated CAT-tailing defines distinct branches of translocation-associated quality control
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Ribosome stalling during co-translational translocation at the endoplasmic reticulum (ER) causes translocon clogging and impairs ER protein biogenesis. Mammalian cells resolve translocon clogging vial a poorly characterized translocation-associated quality control (TAQC) process. Here, we combine genome-wide CRISPR screen with live cell imaging to dissect the molecular linchpin of TAQC. We show that substrates translated from mRNAs bearing a ribosome stalling poly(A) sequence are degraded by lysosomes and the proteasome, while substrates encoded by non-stop mRNAs are degraded by an unconventional ER-associated degradation (ERAD) mechanism involving ER-to-Golgi trafficking and KDEL-dependent substrate retrieval. The triaging diversity appears to result from the heterogeneity of NEMF-mediated CATylation, because a systematic characterization of representative CAT-tail mimetics establishes an AT-rich tail as a “degron” for ERAD, whereas an AG-rich tail can direct a secretory protein to the lysosome. Our study reveals an unexpected protein sorting function for CAT-tailing that safeguards ER protein biogenesis.