Behavioral timescale synaptic plasticity in the hippocampus creates non-spatial representations during learning and is modulated by entorhinal inputs

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Behavioral timescale synaptic plasticity (BTSP) is a form of synaptic potentiation where a single plateau potential in hippocampal neurons forms a place field during spatial learning. We asked whether BTSP can also form non-spatial responses in the hippocampus and what roles the medial and lateral entorhinal cortex (MEC and LEC) play in driving non-spatial BTSP. Two-photon calcium imaging of dorsal CA1 neurons while mice performed an odor-cued working memory task revealed plateau-like events which formed stable odor-specific responses. These BTSP-like events were much more frequent during the first day of task learning, suggesting that BTSP may be important for early learning. Strong single-neuron stimulation through holographic optogenetics induced plateau-like events and subsequent odor-fields, causally linking BTSP with non-spatial representations. MEC chemogenetic inhibition reduced the frequency of plateau-like events, whereas LEC inhibition reduced potentiation and field-induction probability. Calcium imaging of LEC and MEC temporammonic CA1 projections revealed that MEC axons were more strongly activated by odor presentations, while LEC axons were more odor-selective, further confirming the role of MEC in driving plateau-like events and LEC in relaying odor-specific information. Altogether, odor-specific information from LEC and strong odor-timed activity from MEC are crucial for driving BTSP in CA1, which is a synaptic plasticity mechanism for generation of both spatial and non-spatial responses in the hippocampus.

Article activity feed