Acetate enhances spatial memory in females via sex- and brain region-specific epigenetic and transcriptional remodeling

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Metabolic control of chromatin and gene expression is emerging as a key, but largely unexplored aspect of gene regulation. In the brain, metabolic-epigenetic interactions can influence critical neuronal functions. Here, we use a combination of behavioral, proteomic and genomic approaches to demonstrate that the intermediary metabolite acetate enhances memory in a brain region- and sex-specific manner. We show that acetate facilitates the formation of dorsal hippocampus-dependent spatial memories in female but not in male mice, while having no effect on cortex-dependent non-spatial memories in either sex. Acetate-enhanced spatial memory is driven by increased acetylation of histone variant H2A.Z, and upregulation of genes implicated in spatial learning in the dorsal hippocampus of female mice. In line with the sex-specific behavioral outcomes, the effect of acetate on dorsal hippocampal histone modifications and gene expression shows marked differences between the sexes during critical windows of memory formation (consolidation and recall). Overall, our findings elucidate a novel role for acetate, a ubiquitous and abundant metabolite, in regulating dorsal hippocampal chromatin, gene expression and learning, and outline acetate exposure as a promising new approach to enhance memory formation.

Article activity feed