Spatial Immunophenotyping from Whole-Slide Multiplexed Tissue Imaging Using Convolutional Neural Networks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The multiplexed immunofluorescence (mIF) platform enables biomarker discovery through the simultaneous detection of multiple markers on a single tissue slide, offering detailed insights into intratumor heterogeneity and the tumor-immune microenvironment at spatially resolved single cell resolution. However, current mIF image analyses are labor-intensive, requiring specialized pathology expertise which limits their scalability and clinical application. To address this challenge, we developed CellGate, a deep-learning (DL) computational pipeline that provides streamlined, end-to-end whole-slide mIF image analysis including nuclei detection, cell segmentation, cell classification, and combined immuno-phenotyping across stacked images. The model was trained on over 750,000 single cell images from 34 melanomas in a retrospective cohort of patients using whole tissue sections stained for CD3, CD8, CD68, CK-SOX10, PD-1, PD-L1, and FOXP3 with manual gating and extensive pathology review. When tested on new whole mIF slides, the model demonstrated high precision-recall AUC. Further validation on whole-slide mIF images of 9 primary melanomas from an independent cohort confirmed that CellGate can reproduce expert pathology analysis with high accuracy. We show that spatial immuno-phenotyping results using CellGate provide deep insights into the immune cell topography and differences in T cell functional states and interactions with tumor cells in patients with distinct histopathology and clinical characteristics. This pipeline offers a fully automated and parallelizable computing process with substantially improved consistency for cell type classification across images, potentially enabling high throughput whole-slide mIF tissue image analysis for large-scale clinical and research applications.

Article activity feed