Iron chelation by oral deferoxamine treatment decreased brain iron and iron signaling proteins

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Deferoxamine (DFO) and other iron chelators are clinically used for cancer and stroke. They may also be useful for Alzheimer's disease (AD) to diminish iron from microbleeds. DFO may also stimulate antioxidant membrane repair which is impaired during AD. DFO and other chelators do enter the brain despite some contrary reports.

Objective

Low dose, oral DFO was given in lab chow to wildtype (WT) C57BL/6 mice to evaluate potential impact on iron levels, iron-signaling and storage proteins, and amyloid-β protein precursor (AβPP) and processing enzymes. Young WT mice do not have microbleeds or disrupted blood-brain barrier of AD mice.

Methods

Iron was measured by MRI and chemically after two weeks of dietary DFO. Cerebral cortex was examined for changes in iron metabolism, antioxidant signaling, and AβPP processing by western blot.

Results

DFO decreased brain iron 18% ( p  < 0.01) estimated by R2 MRI and decreased seven major proteins that mediate iron metabolism by at least 25%. The iron storage proteins ferritin light and heavy chain decreased by at least 30%. AβPP and secretase enzymes also decreased by 30%.

Conclusions

WT mice respond to DFO with decreased AβPP, amyloid processing enzymes, and antioxidant repair. Potential DFO treatment for early-stage AD by DFO should consider the benefits of lowered AβPP and secretase enzymes.

Article activity feed