The Transcription Factor TCF21 is necessary for adoption of cell fates by Foxd1+ stromal progenitors during kidney development

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Normal kidney development requires coordinated interactions between multiple progenitor cell lineages. The Foxd1+ stromal progenitors are critical for normal nephrogenesis and their heterogeneity is increasingly appreciated. However, the molecular mechanisms and trajectories that drive the differentiation of Foxd1+ cells toward the renal stroma, capsule, mesangial cells, renin cells, pericytes, and vascular smooth muscle cells (VSMCs) are poorly understood. Recent work has implicated Tcf21, a mesoderm-specific bHLH transcription factor critical for embryogenesis, in the development of the kidney stroma and perivascular cells. To investigate the role of Tcf21 in Foxd1+ cells, we performed single-cell RNA sequencing (scRNA-seq) on GFP+ cells from E14.5 Foxd1 Cre ;Rosa26 mTmG ;Tcf21 f/f kidneys ( Tcf21 -cKO) and Foxd1 Cre controls. Clustering of the entire dataset identified a large stromal population and a smaller representation of non-stromal lineages. Subclustering of stromal cells identified six populations associated with healthy kidney development: medullary/perivascular, proliferating, differentiating nephron, nephrogenic zone-associated, collecting duct-associated, and ureteric. Loss of Tcf21 resulted in a dramatic reduction in the medullary/perivascular, proliferating, nephrogenic zone-associated, and collecting duct-associated stromal subpopulations. Immunostaining confirmed that Tcf21 -cKO has a severe constriction of the medullary and collecting duct-associated stromal space. We identified and validated a cluster unique to Tcf21 -cKO kidneys exhibiting mosaic expression of genes from nephrogenic, proliferating, medullary, and perivascular stromal cells spanning across all pseudotime, suggesting cells halted in the midst of differentiation. These findings underscore a critical role for Tcf21 in the emergence of Foxd1+ derivatives, with loss of Tcf21 leading to a shift in stromal cell fates that results in abnormal kidney development.

NEW & NOTEWORTHY

The mechanisms responsible for the emergence of renal stromal heterogeneity has been unknown. Using scRNA-seq on Foxd1+ enriched cells from E14.5 kidneys, we identified seven molecularly distinct stromal populations and their regional association. The data suggest that the transcription factor Tcf21 regulates the adoption of fates by Foxd1+ cells that is required to form the normal milieu of stromal derivatives for the development of a kidney of normal size and function.

Article activity feed