Phosphate-dependent nuclear export via a novel NES class recognized by exportin Msn5

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition. Furthermore, the discovery that unliganded Msn5 is autoinhibited explains the positive cooperativity of Pho4/Ran-binding and proposes a mechanism for Pho4’s release in the cytoplasm. These findings advance our understanding of the diversity of signals that drive nuclear export and how cargo phosphorylation is crucial in regulating nuclear transport and controlling cellular signaling pathways.

Article activity feed