SKAP binding to microtubules reduces friction at the kinetochore-microtubule interface and increases attachment stability under force

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. We recently uncovered that the kinetochore complex Astrin-SKAP, which binds microtubules, reduces rather than increases friction at the mammalian kinetochore-microtubule interface. How it does so is not known. Astrin-SKAP could affect how other kinetochore complexes bind microtubules, reducing their friction along microtubules, or it could itself bind microtubules with similar affinity but lower friction than other attachment factors. Using SKAP mutants unable to bind microtubules, live imaging and laser ablation, we show that SKAP’s microtubule binding is essential for sister kinetochore coordination, force dissipation at the interface and attachment responsiveness to force changes. Further, we show that SKAP’s microtubule binding is essential to prevent chromosome detachment under both spindle forces and microneedle-generated forces. Together, our findings indicate that SKAP’s microtubule binding reduces kinetochore friction and increases attachment responsiveness and stability under force. We propose that having complexes with both high and low sliding friction on microtubules, making a mechanically heterogeneous interface, is key to maintaining robust attachments under force and thus accurate segregation.

Article activity feed