Cellular N-myristoyl transferases Are Required for Mammarenavirus Multiplication

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress, whereas heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect Z mediated virus budding and GP2 mediated fusion activity required to complete the virus cell entry process. In the present work, we present evidence that the validated on-target specific pan NMT inhibitor DDD85464 exerts a potent antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) that correlated with reduced Z budding activity and GP2 mediated fusion activity, as well as proteasome mediated degradation of the Z protein. The potent anti-mammarenaviral activity of DDD85646 was also observed with the hemorrhagic fever causing mammarenaviruses Junin (JUNV) and Lassa (LASV) viruses. Our results support exploration of NMT inhibition as a broad-spectrum antiviral against human pathogenic mammarenaviruses.

Article activity feed