A novel and potent MICA/B antibody is therapeutically effective in KRAS LKB1 mutant lung cancer models

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Concurrent KRAS LKB1 (STK11, KL) mutant Non-Small Cell Lung Cancers (NSCLC) is particularly difficult to treat and does not respond well to current immune checkpoint blockade (ICB) therapies. This is due to numerous mechanisms including low antigen presentation limiting T cell mediated killing. To activate anti-tumor immunity, we targeted tumor cell – natural killer (NK) cell interactions. We tested whether a novel antibody based therapeutic strategy that predominantly activates natural killer (NK) cells demonstrates efficacy in pre-clinical mouse models of KL NSCLC. NK cells rely on binding of ligands, such as Major Histocompatibility Complex (MHC) class I-related chain A or B (MICA/B), to the activating receptor NKG2D. Importantly MICA and MICB are widely expressed in elevated levels across NSCLC subtypes including KL lung cancers. Proteases with the tumor microenvironment (TME) can cleave these proteins rendering tumor cells less visible to NK cells. We therefore developed a MICA monoclonal antibody, AHA-1031, which utilizes two NK cell activating receptors. AHA1031 prevents ligand shedding without interfering with binding to NKG2D while targeting cancer cells to antibody mediated cell dependent cytotoxicity (ADCC). Our therapeutic novel antibody has significant monotherapy activity in KL cancer models including xenografts of human cell lines and patient derived xenografts. Activating NK cells through MICA/B stabilization and inducing ADCC offers an alternative and potent therapy option in KL tumors. MICA/B are shed across different tumors making this therapeutic strategy universally applicable.

Article activity feed