Time-resolved tracking of cellulose biosynthesis and microfibril network assembly during cell wall regeneration in live Arabidopsis protoplasts

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Plant cell walls are composed of polysaccharides among which cellulose is the most abundant component. Cellulose is processively synthesized as bundles of linear β-1,4-glucan homopolymer chains via the coordinated action of multiple enzymes in cellulose synthase complexes (CSCs) embedded within the plasma cell membrane. Plant cell walls are composed of multiple layers of cellulose fibrils that form highly intertwined extracellular matrix networks. However, it is not yet clear as to how cellulose fibrils synthesized by multiple CSCs are assembled into the intricate cellulose network deposited on plant cell surfaces. Herein, we have established an in vivo time-resolved imaging platform for visualizing cellulose during its biosynthesis and assembly into a complex fibrillar network on the surface of Arabidopsis thaliana mesophyll protoplasts as the primary cell wall regenerates. We performed total internal reflection fluorescence microscopy (TIRFM) with fluorophore-conjugated tandem carbohydrate binding modules (tdCBMs) that were engineered to specifically bind to nascent cellulose fibrils. Together with a well-controlled environment, it was possible to monitor in vivo cellulose fibril synthesis dynamics in a time-resolved manner for nearly one day of continuous cell wall regeneration on protoplast cell surfaces. Our observations provide the basis for a novel model of cellulose fibril network development in protoplasts driven by complex interplay of multi-scale dynamics that include: rapid diffusion and coalescence of short nascently synthesized cellulose fibrils; processive elongation of single fibrils; and cellulose fibrillar network rearrangement during cell wall maturation. This platform is valuable for exploring mechanistic aspects of cell wall synthesis while visualizing cellulose microfibrils assembly.

Article activity feed