Chemical genetics reveals cross-activation of plant developmental signaling by the immune peptide-receptor pathway

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cells sense and integrate multiple signals to coordinate development and defence. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA receptor-kinase pathway. kC9 binds to and inhibits the downstream MAP kinase MPK6, perturbing its substrate interaction. Strikingly, activation of immune signaling by a bacterial flagellin peptide nullified kC9’s effects on stomatal development. This cross-activation of stomatal development by immune signaling depends on the immune receptor FLS2 and occurs even in the absence of kC9 if the ERECTA-family receptor population becomes suboptimal. Furthermore, proliferating stomatal-lineage cells are vulnerable to the immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by MAP Kinase homeostasis reflecting the availability of upstream receptors, thereby providing a novel view on signal specificity.

Article activity feed