Genetic Deletion of Skeletal Muscle Inositol Polyphosphate Multikinase Disrupts Glucose Homeostasis and Impairs Exercise Tolerance

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.

Article activity feed