PLK-1 regulates MEX-1 polarization in the C. elegans zygote

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The one-cell C. elegans embryo undergoes an asymmetric cell division during which germline factors such as the RNA-binding proteins POS-1 and MEX-1 segregate to the posterior cytoplasm, leading to their asymmetric inheritance to the posterior germline daughter cell. Previous studies found that the RNA-binding protein MEX-5 recruits polo-like kinase PLK-1 to the anterior cytoplasm where PLK-1 inhibits the retention of its substrate POS-1, leading to POS-1 segregation to the posterior. In this study, we tested whether PLK-1 similarly regulates MEX-1 polarization. We find that both the retention of MEX-1 in the anterior and the segregation of MEX-1 to the posterior depend on PLK kinase activity and on the interaction between MEX-5 and PLK-1. Human PLK1 directly phosphorylates recombinant MEX-1 on 9 predicted PLK-1 sites in vitro, four of which were identified in previous phosphoproteomic analysis of C. elegans embryos. The introduction of alanine substitutions at these four PLK-1 phosphorylation sites (MEX-1(4A)) significantly weakened the inhibition of MEX-1 retention in the anterior, thereby weakening MEX-1 segregation to the posterior. In contrast, mutation of a predicted CDK1 phosphorylation site had no effect on MEX-1 retention or on MEX-1 segregation. MEX-1(4A) mutants are viable and fertile but display significant sterility and fecundity defects at elevated temperatures. Taken together with our previous findings, these findings suggest PLK-1 phosphorylation drives both MEX-1 and POS-1 polarization during the asymmetric division of the zygote.

Article activity feed