A novel method for integrating genomic and Tn-Seq data to identify common in vivo fitness mechanisms across multiple bacterial species

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Sepsis is life-threatening organ dysfunction due to an unregulated immune response to infection. Bacteremia is a leading cause of sepsis, and members of the Enterobacterales cause nearly half of bacteremia cases annually. While previous Tn-Seq studies to identify novel bacteremia-fitness genes have provided valuable insight into virulence mechanisms, evidence for common pathways across species was lacking. To identify common fitness pathways in five bacteremia-caused Enterobacterales species, we utilized the JCVI pan-genome pipeline to integrate Tn-Seq fitness data with multiple available functional data types. Core genes from species pan-genomes were used to construct a multi-species core pan-genome, producing 2,850 core gene clusters found in four out of the five species. Integration of Tn-Seq fitness data enabled identification of 373 protein clusters that were conserved in all five species. A scoring rubric was applied to these clusters, which incorporated Tn-Seq fitness defects, operon localization, and antibiotic susceptibility data to identify seven common bacteremia-fitness pathways. Mutations in tatC showed reduced fitness in vivo and increased susceptibility to beta-lactams that were restored following tatC complementation in trans . By integrating known operon structures and antibiotic susceptibility with Tn-Seq fitness data, common genes within the core pan-genome emerged and revealed mechanisms that are essential for colonization of, or survival in, the mammalian bloodstream. Our prediction and validation of tatC as a common bacteremia fitness factor and contributor of antibiotic resistance supports the utility of this bioinformatic approach. This study represents a major step forward to identify novel targets of therapy against these deadly widespread sepsis infections.

Article activity feed