A tethering mechanism underlies Pin1-catalyzed proline cis-trans isomerization at a noncanonical site

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The prolyl isomerase Pin1 catalyzes the cis-trans isomerization of proline peptide bonds, a non-covalent post-translational modification that influences cellular and molecular processes, including protein-protein interactions. Pin1 is a two-domain enzyme containing a WW domain that recognizes phosphorylated serine/threonine-proline (pS/pT-P) canonical motifs and an enzymatic PPIase domain that catalyzes proline cis-trans isomerization of pS/pT-P motifs. Here, we show that Pin1 uses a tethering mechanism to bind and catalyze proline cis-trans isomerization of a noncanonical motif in the disordered N-terminal activation function-1 (AF-1) domain of the human nuclear receptor PPARγ. NMR reveals multiple Pin1 binding regions within the PPARγ AF-1, including a canonical motif that when phosphorylated by the kinase ERK2 (pS112-P113) binds the Pin1 WW domain with high affinity. NMR methods reveal that Pin1 also binds and accelerates cis-trans isomerization of a noncanonical motif containing a tryptophan-proline motif (W39-P40) previously shown to be involved in an interdomain interaction with the C-terminal ligand-binding domain (LBD). Cellular transcription studies combined with mutagenesis and Pin1 inhibitor treatment reveal a functional role for Pin1-mediated acceleration of cis-trans isomerization of the W39-P40 motif. Our data inform a refined model of the Pin1 catalytic mechanism where the WW domain binds a canonical pS/T-P motif and tethers Pin1 to the target, which enables the PPIase domain to exert catalytic cis-trans isomerization at a distal noncanonical site.

SIGNIFICANCE

Proline peptide bonds naturally occur in cis conformations and isomerize to trans conformations on exchange regimes on the order of seconds to minutes. Pin1, a prolyl isomerase, catalyzes the isomerization of proline peptide bonds that contain a specific phospho-motif—a phosphorylated serine or threonine followed by a proline (pS/pT-P)—allowing for switch-like effects on target protein structure and function. One protein substrate of Pin1 is the nuclear receptor peroxisome proliferator activated receptor gamma (PPARγ), which is shown here to undergo Pin1-catalyzed isomerization at a noncanonical proline distal to a canonical pS/pT-P binding site. These studies lay the foundation for understanding the role of Pin1 in mediating PPARγ-regulated transcription and expand understanding of Pin1-catalyzed enzymatic activities and functions.

Article activity feed