Long-lived adult-born hippocampal neurons promote successful cognitive aging

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Aging is commonly associated with a decline in memory abilities, yet some individuals remain resilient with preserved memory abilities. Memory processing is critically dependent on adult neurogenesis, a unique form of plasticity in the hippocampus. However, it remains unknown if cognitive aging influences the integration and role of adult-born hippocampal neurons (ABNs) generated early in adult life. Here, we investigated the role of long-lived ABNs in rats characterized as either resilient or vulnerable to cognitive aging using a peudo-longitudinal approach. Our findings reveal that long-lived ABNs support successful cognitive aging by preserving their synaptic inputs onto the proximal segments of their dendrites, and that these proximal synaptic sites also demonstrate a maintenance of their mitochondrial homeostasis. Furthermore, by-passing the reduced inputs of ABNs in vulnerable rats through direct optogenetic stimulation successfully improved their memory abilities. Overall, our data indicate that the maintenance of long-lived ABNs integration within the neuronal network is essential for successful cognitive aging, highlighting their potential as a therapeutic target for restoring cognitive functions in old age.

Article activity feed