An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a cost-effective high-spatial-temporal, multimodal, and multiplex mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of quantitative phase microscopy to capture live-cell dynamics over a large cell population with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This integration facilitates simultaneous tracking of live-cell morphodynamics across thousands of cells, alongside high-content molecular analysis at the single-cell level. Furthermore, the Omni-Mesoscope offers a mesoscale field of view of approximately 5 mm 2 with a high spatial resolution down to 700 nm, enabling the capture of information-rich images with detailed sub-cellular features. We demonstrate such capability in delineating molecular characteristics underlying rare dynamic cellular phenomena, such as cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. Moreover, the cost-effectiveness and the simplicity of our Omni-Mesoscope democratizes mesoscopic imaging, making it accessible across diverse biomedical research fields. To further demonstrate its versatility, we integrate expansion microscopy to enhance 3D volumetric super-resolution imaging of thicker tissues, opening new avenues for biological exploration at unprecedented scales and resolutions.

Article activity feed