Vortex light field microscopy: 3D spectral single-molecule imaging with a twist

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We introduce vortex light field microscopy (VLFM), a novel method for snapshot 3D spectral single-molecule localization microscopy. Inspired by the azimuthal phase profile of optical vortices, we place an azimuthally oriented prism array immediately after the microlens array in a Fourier light field microscope (FLFM). This innovative arrangement causes the axial position and spectral peak for a point emitter to be encoded in the radial and azimuthal displacement of point-spread-function (PSF) respectively. This enables simultaneous detection of 3D position and emission peak of individual fluorophores with 25 nm spatial precision and 3 nm spectral precision over a 4 μ m depth of field (DOF). We illustrate the spectral scalability of our method by performing four-color 3D single particle tracking of freely diffusing fluorescent beads, and two-color 3D dSTORM imaging of microtubules and mitochondria in fixed COS-7 cells, without the need for spectrally distinct fluorophores.

Article activity feed