Urinary Volatile Organic Compound Metabolites are Associated with High Blood Pressure Among Non-smoking Participants in the National Health and Nutrition Examination Survey (2011-2018)

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

Volatile organic compounds (VOCs) are ubiquitous environmental pollutants. Exposure to VOCs is associated with cardiovascular disease (CVD) risk factors, including elevated blood pressure (BP) in susceptible populations. However, research in the general population, particularly among non-smoking adults, is limited. We hypothesized that higher VOC exposure is associated with higher BP and hypertension, among non-smokers.

Methods

We included four cycles of data (2011-2018) of non-smoking adults (n=4,430) from the National Health and Nutrition Examination Survey (NHANES). Urinary VOC metabolites were measured by ultra-performance liquid chromatography–mass spectrometry, adjusted for urine dilution, and log-transformed. We estimated mean differences in BP using linear models and prevalence ratio of stage 2 hypertension using modified Poisson models with robust standard errors. Models were adjusted for age, sex, race and ethnicity, education, body mass index, estimated glomerular filtration rate and NHANES cycle.

Results

Participants were 54% female, with a median age of 48 years, 32.3% had hypertension, and 7.9% had diabetes. The mean differences (95% CI) in systolic BP were 1.61 (0.07, 3.15) and 2.46 (1.01, 3.92) mmHg when comparing the highest to lowest quartile of urinary acrolein (CEMA) and 1,3-butadiene (DHBMA) metabolites. The prevalence ratios (PR) for hypertension were 1.06 (1.02, 1.09) and 1.05 (1.01, 1.09) when comparing the highest to lowest quartiles of urinary acrolein (CEMA) and 1,3-butadiene (DHBMA), respectively.

Conclusions

Exposure to VOCs may be relevant yet understudied environmental contributors to CVD risk in the non-smoking, US population.

Article activity feed