Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics and Normal Mode Analysis (NMA) allow the estimation of a protein’s intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/ .

Article activity feed