Super-enhancer-driven CACNA2D2 is an EWSR1::WT1 signature gene encoding a diagnostic marker for desmoplastic small round cell tumor (DSRCT)
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Desmoplastic small round cell tumor (DSRCT) is a highly aggressive cancer predominantly occurring in male adolescents and young adults. The lack of a comprehensive understanding on the biology of the disease is paralleled by its dismal survival rates (5–20%). To overcome this challenge, we first identified and prioritized urgently needed resources for clinicians and researchers. Thus, we established genome-wide single-cell RNA-sequencing and bulk proteomic data of in vitro and in vivo-generated knockdown models of the pathognomonic DSRCT fusion oncoprotein (EWSR1::WT1) and combined them with an original systems-biology-based pipeline including patient data and the largest histology collection of DSRCTs and morphological mimics available to date. These novel tools were enriched with curated public datasets including patient- and cell line-derived ChIP-seq, bulk and single-cell RNA-seq studies resulting in a multi-model and multi-omic toolbox for discovery analyses. As a proof of concept, our approach revealed the alpha-2/delta subunit of the voltage-dependent calcium channel complex, CACNA2D2, as a highly overexpressed, super-enhancer driven, direct target of EWSR1::WT1. Single-cell and bulk-level analyses of patient samples and xenografted cell lines highlighted CACNA2D2 as a critical component of our newly established EWSR1::WT1 oncogenic signature, that can be employed to robustly identify DSRCT in reference sets. Finally, we show that CACNA2D2 is a highly sensitive and specific single biomarker for fast, simple, and cost-efficient diagnosis of DSRCT. Collectively, we establish a large-scale multi-omics dataset for this devastating disease and provide a blueprint of how such toolbox can be used to identify new and clinically relevant diagnostic markers, which may significantly reduce misdiagnoses, and thus improve patient care.