Therapeutic Peptide SS-31 Modulates Membrane Binding and Aggregation of Alpha-Synuclein and Restores Impaired Mitochondrial Function

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Membrane binding and aggregation properties of alpha-synuclein are closely associated with Parkinson's disease and a class of related syndromes named as synucleinopathy. This study explored the potential of SS-31 (Elamipretide), a therapeutic tetrapeptide with alternating cationic and aromatic residues and known properties of mitochondrial inner membrane binding and oxidative stress reduction, in modulating alpha-synuclein interaction with the lipid membranes and mitigating impairment of mitochondrial function induced by alpha-synuclein oligomers. It was demonstrated by both fluorescence correlation spectroscopy and fluorescence anisotropy that SS-31 displaces both wild-type and N-terminus acetylated alpha-synuclein from negatively charged small unilamellar vesicles in a dose-dependent manner. Thioflavin-T assay and transmission electron microscopy (TEM) showed that SS-31 inhibits membrane-induced alpha-synuclein aggregation and alters the morphology of alpha-synuclein fibrils. Moreover, Seahorse Mito Stress Test indicated that SS-31 restores impaired mitochondrial function in alpha-synuclein oligomer-treated neuroblastoma cells. Finally, confocal imaging revealed that SS-31 hinders cellular uptake of alpha-synuclein oligomers, possibly by modifying cell membrane electrostatics. These findings underscore the multifaceted protective role of SS-31 against mitochondrial dysfunction caused by alpha-synuclein aggregation. Consequently, SS-31 emerges as a promising therapeutic candidate to attenuate neurodegeneration pertinent to alpha-synuclein misfolding and aggregation. There is a good potential for further refinement of such peptide against many diseases linked to mitochondrial dysfunction and oxidative stress.

Article activity feed